
https://langdevcon.org
Seville 17-19 October, 2024

GenFPL: 
DSL-embeddable functional
programming languages
Meinte Boersma (DSL Consultancy)

https://langdevcon.org/

Accessibility

This presentation and its code available at:
https://github.com/dslmeinte/GenFPL-langdev2024

4ZMD

https://github.com/dslmeinte/GenFPL-LangDev-2024

Caveats

1. GenFPL = “generate FPL”, not “gener{al|ic} FPL”
2. GenFPL is in its infancy fetal stage

Quick quiz (AKA “market fit research”)

1. Have developed a software language (DSL, etc.), and
2. Ended up implementing an FPL-like sub language for

(declarative) expressions, that is
3. Quite domain-aspecific — logic, arithmetic, etc.

Who among us

What is GenFPL?

▪JavaScript (Node.js/NPM) tooling…

▪…to quickly implement FPL-like sub languages

▪ Located at: https://github.com/dslmeinte/GenFPL
(license=Apache 2.0)

▪ Powered by

https://github.com/dslmeinte/GenFPL

Why create GenFPL?
▪Because there is a need for rapid, industrialized implementation of

embeddable sub FPLs — (see quiz).
▪But… KernelF ?! Not everything happens in MPS.
▪Showcase and augment LionWeb.
▪To challenge some PL-“traditions”.
▪To scratch my FPL-itch without needing to have to deal with

limitations/idiosyncrasies of an existing FPL.
▪For fun!
▪ …this talk…

Powered by

Contents (not in order)

1. Demo GenFPL
a. Installation and making a configuration
b. Implementing and testing an interpreter
c. Accessing records

2. Some(anti-)patterns for sub FPLs
a. Typical areas and their meta-hierarchy
b. To stdlib, or not to stdlib?

What is an FPL anyway?

▪Funclarative1 expressions language

▪Governed by a substitution model,
so admits to algebraic reasoning
 — Makes it simpler to reason about programs

▪Quite simple to correctly implement semantics
and type system

1) term coined by: Markus Völter

GenFPL overview

Powered by

conforms to

GenFPL configuration
(LionWeb M1)

put in

refers to

sub-FPL's
metamodel

(LionWeb M2)

def. impl.
interpreter (TS)

conform
s tosmall example

model
(LionWeb M1)

concrete syntax
(Freon artifacts)

GenFPL configuration
language

(LionWeb M2 + TS types)

ext. impl.
interpreter (TS)

ext. impl. type
system (TS)

generator
(TS CLI in NPM)

generate

embeds

host DSL's
metamodel

(LionWeb M2)

 points to

M2

handwritten
(tech/format)

generated
(tech/format)

Legenda

planned — not yet
implemented

tooling
(tech/format)

Web UI
for configuration

configure def. impl. type
system (TS)

Design

▪Generate parts of sub FPL from a configuration:

▪Metamodel (M2)

▪Extensible default implementation of interpreter

▪ (Future work: type system, Freon integration, etc.)

▪Granularity: areas ~ modules

Areas of sub-FPLs
functions:

def.s+invocations,
closures

primitive types:
bool, string, int,

&c.
nil value

void&option types

faults/exceptions
(as values!)

unknowns
(“variables”)

refers to types in

structured/nested
data types
(“records”)

external M2
(LionWeb

languages)
“Ur”-{value|type}

types
expression

grouping,
ternary if

“listy” types:
array[] / list*

comments
(as annotations)

temporal
expressions unit tests type tagsdate + time

expressions

Meta-hierarchy of an area

“Ur”-{type|value} types are specified
in the GenFPL configuration

are instances of
literal(s)

type(s)
operate on instances of

operations “Ur”-type type

“Ur”-value type

Type system

host language's
concept

sub language's
concept

Legenda

Meta-hierarchy of an area (cont.d)
Example: boolean area

host language

sub language

ValueThe “Ur”-value type Type The “Ur”-type type

BooleanLiteral

value: Boolean

BooleanValue

BooleanBinaryOperation

operator: BinaryOperators
BooleanNegation BooleanType

left r ight operand

Demo (1/2)

Accessing records

▪Observation: host language often has
concepts for (nested) data structures
— e.g. “records”.

▪Want to be able to access attribute
values on instances of those.

▪Solution: configuration points to
concepts in the host language,
and generate appropriate concepts.

host language

sub language

Value

Type

RecordDefinition

name: String

Attribute

name: String

RecordInstance

AttributeValue

DotExpression

attributes

*

type

attributeValues
*

attribute

value

instance

attribute

Demo (2/2)

To stdlib, or not to stdlib?

▪A stdlib adds features to a language without enlarging
the M2. Idea:

▪Cost: need generic concepts to be able to define the
stdlib including type system → an “inner metamodel”

M2

stdlib refers to M1

▪Pros:

▪Fewer concepts to deal
with (eventually)

▪More malleable

▪Better abstractions and
generalizations

▪Cons:

▪No syntactic difference:
“everything’s an <X>”
⇒ worse discoverability

▪More complex type
system

To stdlib, or not to stdlib? (cont.d)

To stdlib, or not to stdlib? (cont.d)

In the context of GenFPL:

▪ Generation is cheap

▪⇒ Pros of stdlib disappear, while cons would still be “hit”

▪⇒ Design choice: no stdlib

Conclusions

▪ Interesting to do this gener{atively|ically}

▪Generating a language means keeps complexity of it down

▪Good input for LionWeb

▪Plenty of work to do

Future work — plans / ideas

▪ Integrate with Freon for a concrete syntax

▪More areas

▪A CLI tool

▪Type system

▪Nice UI for configuration

▪Generate a generator

Questions?

https://langdevcon.org
Seville 17-19 October, 2024

Thank you!
And generate your sub-FPL today!

https://langdevcon.org/

